首页 | 本学科首页   官方微博 | 高级检索  
     检索      

连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响
引用本文:陆勇俊,杨溢,王峰会,楼康,赵翔.连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响[J].物理学报,2016,65(9):98102-098102.
作者姓名:陆勇俊  杨溢  王峰会  楼康  赵翔
作者单位:西北工业大学工程力学系, 西安 710129
基金项目:西北工业大学研究生创意创新种子基金(批准号: Z2015087)、国家自然科学基金(批准号: 11372251, 11572253)和中央高校基本科研业务费专项资金(批准号: 3102014JCQ01040)资助的课题.
摘    要:连续梯度的电极由于其相对于多层梯度电极能更加有效地缓解电极和电解质的热失配及改善界面黏接而受到特别的关注. 本文通过建立含连续梯度的阳极功能层的阳极支撑固体氧化物燃料电池的力学模型, 研究了连续梯度的阳极功能层对阳极支撑固体氧化物燃料电池半电池在初始还原过程中曲率及残余应力的影响. 结果表明电池的曲率在初始还原过程中随还原程度的增大而逐渐增大. 连续梯度的阳极功能层的引入不能同时改善电池的曲率和残余应力, 即连续梯度的阳极功能层在缓解应力的同时会导致曲率的增大, 反之亦然. 含有连续梯度的阳极功能层的电池在部分还原状态下, 梯度层/阳极支撑界面处具有最大的拉应力容易导致电池受损, 实际中应保证电池被完全还原.

关 键 词:固体氧化物燃料电池  梯度功能层  曲率  残余应力
收稿时间:2015-11-16

Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process
Lu Yong-Jun,Yang Yi,Wang Feng-Hui,Lou Kang,Zhao Xiang.Effect of continuously graded functional layer on curvature and residual stress of solid oxide fuel cell in initial reduction process[J].Acta Physica Sinica,2016,65(9):98102-098102.
Authors:Lu Yong-Jun  Yang Yi  Wang Feng-Hui  Lou Kang  Zhao Xiang
Institution:Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:Solid oxide fuel cell (SOFC) is considered to be a highly efficient device to convert chemical fuels directly into electrical power. Because of multilayer composite arrangement of cells, mismatch of the thermal expansion coefficients, chemical/thermal gradient, or phase change of the materials will result in residual stresses, which are reflected in the pronounced bending of unconstrained cells and cause a reliable problem. Considerable efforts have been devoted to the analysis of residual stresses in an elastic multilayer system, and one of the efforts that are to improve not only electrochemical performance for high energy conversion efficiency but also long term stability, is to process a continuously gradient anode functional layer (CG-AFL) between dense electrolyte and porous anode. Hence to understand the stress distribution and deformation of the multilayer with a CG-AFL is needed for the cell design. As the chemical reduction takes place at the interface between NiO-YSZ and the previously reduced porous Ni-YSZ, a reduced layer, together with the unreduced layer and the electrolyte will cause the residual stresses to be re-distributed. In this paper, taking the CG-AFL into account, the curvature and residual stresses of half-cell during reduction are analyzed. The results show that the curvature of half-cell with a CG-AFL increases as the reduction process. And the curvature would also increase as the thickness of the CG-AFL increases, and decrease with the increase of the index of power function that expresses young's modulus and thermal expansion coefficient of gradient layer. The residual stresses among the layers are correspondingly influenced by the thickness of the gradient layer, the index of power function and reduction extent. When taking power function as a linear function, the gradient layer obviously reduces the residual stress in the electrolyte. However, the increase of the index in power function will cause the increase of electrolyte residual stress. These mentioned analyses reveal that the CG-AFL cannot offer a solution that simultaneously improves the residual stress and curvature in a half-cell in terms of thickness and profile exponent of CG-AFL, i.e., the mitigation of residual stress will give rise to the increase of curvature, and vice versa. On the other hand, for part-reduced half-cell, the maximum tensile stress is found at anode/gradient layer interface in anode layer, which may facilitate structural failure since tensile residual stress is so high that it reaches the fracture strength of anode material. Consequently, it is important to ensure that the anode is fully reduced in practice. In conclusion, the existing gradient layer is helpful for enhancing the cell reliability via suitable design.
Keywords:solid oxide fuel cell  graded functional layer  curvature  residual stress
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号