首页 | 本学科首页   官方微博 | 高级检索  
     检索      

等价电子数组元Heusler合金Fe_2RuSi中的原子占位
引用本文:辛月朋,马悦兴,郝红月,孟凡斌,刘何燕,罗鸿志.等价电子数组元Heusler合金Fe_2RuSi中的原子占位[J].物理学报,2016,65(14):147102-147102.
作者姓名:辛月朋  马悦兴  郝红月  孟凡斌  刘何燕  罗鸿志
作者单位:河北工业大学材料科学与工程学院, 天津 300130
基金项目:国家自然科学基金(批准号:11474343,51371075)和河北省教育厅基金(批准号:BJ2014012)资助的课题.
摘    要:对等价电子数组元Heusler合金Fe_2RuSi的原子占位、电子结构与磁性进行了理论与实验研究.第一性原理计算表明,虽然Fe_2RuSi中Fe,Ru均有8个价电子,但是Ru仍表现出强烈的占据A,C晶位倾向.基态总能最低的是Fe与Ru分别占据A,C晶位的XA结构,次低的是Fe,Ru在A,C位混乱占位的L2_1B结构,且两者能量差很小.这说明决定Heusler合金中过渡族原子占位的因素除价电子数以外还可能有原子半径和共价杂化作用等.态密度和差分电荷密度计算表明Heusler合金中主族元素与最近邻过渡族元素之间的p-d共价杂化对Heusler合金的占位有明显影响,在XA结构中Ru与Si和Fe(B)之间都存在明显的杂化作用,而在高能的L2_1结构中,Si与最近邻的Fe杂化作用相当弱.XRD测试表明在室温Fe_2RuSi存在A,C位之间的Fe-Ru反占位,形成了能量次高的L21B结构,这主要来自于混合熵对自由能的贡献及其引起的原子自发混乱占位.在5 K下Fe_2RuSi的饱和磁矩为4.87μB/f.u.,与计算值符合得相当好.

关 键 词:Heusler合金  Fe2RuSi  电子结构  原子占位
收稿时间:2016-04-01

Site preference in isoelectronic Heusler alloy Fe2RuSi
Xin Yue-Peng,Ma Yue-Xing,Hao Hong-Yue,Meng Fan-Bin,Liu He-Yan,Luo Hong-Zhi.Site preference in isoelectronic Heusler alloy Fe2RuSi[J].Acta Physica Sinica,2016,65(14):147102-147102.
Authors:Xin Yue-Peng  Ma Yue-Xing  Hao Hong-Yue  Meng Fan-Bin  Liu He-Yan  Luo Hong-Zhi
Institution:School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract:The site preference, electronic structure, and magnetism of Heusler alloy Fe2RuSi are investigated theoretically and experimentally. The magnetic and electronic properties of Heusler alloys are strongly related to the atomic ordering and site preference in them. Usually, the site preference of the transition metal elements is determined by the number of their valence electrons. However, the recent results suggest that some new possible factors such as atomic radius should also be considered. Here we compare the phase stabilities of several different atomic orderings like XA, L21, DO3, L21B in Fe2RuSi, in which Fe and Ru atom have 8 valence electrons each, thus the influence of “number of their valence electrons” can be omitted. First-principles calculations suggest that Ru atom prefers entering sites A and C in the lattice. In ground state, the most stable structure is of XA type, in which Fe and Ru atoms occupy A and C sites, respectively and the second stable structure is L21B type, in which Fe and Ru atoms occupy A and C sites randomly. With Ru atom entering into the B site, the total energy increases rapidly. Thus there is still a strongly preferable occupation of Ru though Fe and Ru atom are isoelectronic. This confirms that the “valence electrons rule” may be not enough to determine the site preference of the transition metal element in Heusler alloy. The preferable occupation of Ru atom in Fe2RuSi can be explained from the electronic structure. It is found that in the XA DOS, there is strong hybridization between the electrons of the nearest Ru and Si or Fe (B) atom. However, in the high energy L21 structure the hybridization between Ru and the nearest Fe (A, C) is weak, which reduces its phase stability. This is confirmed further by the charge density difference calculation. Single phase Fe2RuSi with a lattice parameter of 5.79 Å is synthesized successfully. Comparing the superlattice reflections (111) and (200) in the experimental XRD pattern with those in the simulated patterns for different structures, we find that Fe2RuSi crystallizes in L21B structure rather than the most stable XA one at room temperature, which mainly originates from the contribution of mixed entropy to the free energy, and its caused atomic disorder at high temperatures. This disorder can be retained during the cooling procedure, while it does not influence the conclusion that Ru atom prefers the (A, C) sites in Fe2RuSi strongly. Finally, the saturation magnetization Ms at 5 K is 4.87 μB/f.u., which agrees well with the theoretical result. The large total magnetic moment mainly comes from the contributions of Fe, especially Fe magnetic moments on B sites.
Keywords:Heusler alloy  Fe2RuSi  electronic structure  site preference
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号