首页 | 本学科首页   官方微博 | 高级检索  
     检索      

混沌光场光子统计分布及二阶相干度的分析与测量
引用本文:兰豆豆,郭晓敏,彭春生,姬玉林,刘香莲,李璞,郭龑强.混沌光场光子统计分布及二阶相干度的分析与测量[J].物理学报,2017,66(12):120502-120502.
作者姓名:兰豆豆  郭晓敏  彭春生  姬玉林  刘香莲  李璞  郭龑强
作者单位:1. 太原理工大学, 新型传感器与智能控制教育部重点实验室, 太原 030024; 2. 太原理工大学物理与光电工程学院, 光电工程研究所, 太原 030024
基金项目:国家自然科学基金(批准号:61405138,61505136,61505137,61671316)、国家国际科技合作专项(批准号:2014DFA50870)和山西省自然科学基金(批准号:201601D011015,201601D021021)资助的课题.
摘    要:利用通信波段双通道单光子探测器,采用Hanbury Brown-Twiss关联测量方案,理论分析并实验测量了光反馈半导体激光器产生的混沌光场的光子统计分布及不同混沌状态光场的二阶相干度.通过对混沌光场二阶相干度g~((2))(τ)的理论分析,得出随着延迟时间和相干时间的变化,其与相干光、热光及单光子态的二阶相干度可明显区分并呈现出不同分布.同时实验上产生了频谱宽度6.7 GHz的混沌光场,测量了不同光子数分布的结果,并用高斯随机分布、泊松分布、玻色-爱因斯坦分布对光子数分布进行理论拟合,发现随着入射平均光子数的增加,光子数分布从玻色-爱因斯坦分布过渡到泊松分布,但整个过程都与高斯随机分布符合较好,且光场的二阶相干度g~((2))(0)由2降至1.通过改变偏置电流(I=1.0Ith-2.0Ith)和反馈强度(0—10%),实验上研究了混沌光场由低频起伏到相干塌陷的过程中不同状态宏观动力学特性与二阶相干度的对应关系.结果表明:混沌光场在此过程中始终呈现出明显的聚束效应,并在频谱宽度最大时达到最强;同时给出了光子计数测量中聚束效应减弱的物理原因.实验表明该系统及方法能很好地揭示不同状态混沌光场的光子统计特性.

关 键 词:混沌激光  二阶相干度  单光子计数  半导体激光器
收稿时间:2017-01-24

Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation
Lan Dou-Dou,Guo Xiao-Min,Peng Chun-Sheng,Ji Yu-Lin,Liu Xiang-Lian,Li Pu,Guo Yan-Qiang.Photon number distribution and second-order degree of coherence of a chaotic laser: analysis and experimental investigation[J].Acta Physica Sinica,2017,66(12):120502-120502.
Authors:Lan Dou-Dou  Guo Xiao-Min  Peng Chun-Sheng  Ji Yu-Lin  Liu Xiang-Lian  Li Pu  Guo Yan-Qiang
Institution:1. Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Eduction, Taiyuan University of Technology, Taiyuan 030024, China; 2. Institute of Optoelectronic Engineering, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:The researches on higher-order coherence and quantum statistics of light field are the important researching issues in quantum optics. In 1956, Hanbury-Brown and Twiss (HBT) (Hanbury-Brown R, Twiss R Q 1956 Nature 177 27) revolutionized optical coherence and demonstrated a new form of photon correlation. The landmark experiment has far-reaching influenced and even inspired the quantum theory of optical coherence that Glauber developed to account for the conclusive observation by HBT. Ever since then, the HBT effect has motivated extensive studies of higher-order coherence and quantum statistics in quantum optics, as well as in quantum information science and cryptography. Based on the HBT scheme, the degree of coherence and photon number distribution of light field can be derived from correlation measurement and photon counting technique. With the rapid development of the photoelectric detection technology, single-photon detection, which is the most sensitive and very widespread method of optical measurement, is used to characterize the natures of light sources and indicate their differences. More recently, HBT scheme combined with single-photon detection was used to study spatial interference, ghost imaging, azimuthal interference effect, deterministic manipulation and detection of single-photon source, etc. Due to broadband RF spectrum, noiselike feature, hypersensitivity to the initial conditions and long-term unpredictability, chaotic laser meets the essential requirements for information security and cryptography, and has been developed in many applications such as chaos-based secure communications and physical random number generation, as well as public-channel secure key distribution. But the research mainly focused on macroscopic dynamics of the chaotic laser. Moreover, the precision of measurement has reached a quantum level at present. Quantum statistcs of light field can also uncover profoundly the physical nature of the light. Thus, it is important to exploit the higher-order degree of coherence and photon statistics of chaotic field, which contribute to characterizing the field and distinguishing it from others. In this paper, photon number distribution and second-order degree of coherence of a chaotic laser are analyzed and measured based on HBT scheme. The chaotic laser is composed of a distributed feedback laser diode with optical feedback in fiber external cavity configuration. The bandwidth of the chaotic laser that we obtain experimentally is 6.7 GHz. The photon number distribution of chaotic laser is fitted by Gaussian random distribution, Possionian distribution and Bose-Einstein distribution. With the increase of the mean photon number, the photon number distribution changes from Bose-Einstein distribution into Poissonian distribution and always accords with Gaussian random distribution well. The second-order coherence g(2)(0) drops gradually from 2 to 1. By changing the bias current (I = 1.0Ith-2.0Ith) and feedback strength (0–10%), we compare and illustrate different chaotic dynamics and g(2)(0). From low frequency fluctuation to coherence collapse, the chaotic laser shows bunching effect and fully chaotic field can be obtained at the broadest bandwidth. Furthermore, the physical explanation for sub-chaotic or weakening of bunching effect is provided. It is concluded that this method can well reveal photon statistics of chaotic laser and will open up an avenue to the research of chaos with quantum optics, which merges two important fields of modern physics and is extremely helpful for the high-speed remote chaotic communication.
Keywords:chaotic laser  second-order degree of coherence  single photon counting  semiconductor laser
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号