首页 | 本学科首页   官方微博 | 高级检索  
     检索      

受限胶体液滴蒸发过程中胶体颗粒沉积过程观察
引用本文:吴赛,李伟斌,石峰,蒋世春,蓝鼎,王育人.受限胶体液滴蒸发过程中胶体颗粒沉积过程观察[J].物理学报,2015,64(9):96101-096101.
作者姓名:吴赛  李伟斌  石峰  蒋世春  蓝鼎  王育人
作者单位:1. 天津大学材料科学与工程学院, 天津 300072;2. 中国科学院力学研究所, 微重力重点实验室, 北京 100190
基金项目:国家自然科学基金(批准号: 11202209)和中国科学院战略性先导科技专项(A类)(批准号: XDA04020202, XDA04020406)资助的课题.
摘    要:亲水玻璃基片在掩模板的保护下, 通过喷涂超疏水层, 得到了被疏水层包围的圆形亲水区域. 胶体液滴在这一区域被很好地限制, 并且液滴体积可以在较大范围内变化, 体积的变化可以改变液滴与基片的表观接触角. 通过显微观察手段原位观察了表观接触角为疏水的受限胶体液滴蒸发过程中粒子沉积行为. 在整个蒸发过程中, 受限液滴边界被钉扎在亲疏水交界处. 粒子沉积过程中, 驱动粒子的液滴内部流动会发生变化. 粒子沉积图案形成过程由三种流体行为控制, 最初, Marangoni效应占主导作用, 驱动粒子在液滴表面聚集, 随之沉积到液滴边缘; 随着蒸发进行, 当接触角变小(<60°)时, 由于边界蒸发速度更快导致的毛细补偿流使得粒子直接向边界沉积. 在干燥的最后阶段, 亲水区域内的液层变得很薄, 只有一单层粒子存在于这一薄液层中, 蒸发继续进行时, 薄液层发生失稳使得粒子迅速聚集而形成网络化图案, 由于粒子间距变小, 球间的液桥毛细力也会参与到这一聚集过程中.

关 键 词:液滴蒸发  Marangoni流动  毛细流动  薄液层失稳
收稿时间:2014-11-06

Observation of colloidal particle deposition during the confined droplet evaporation process
Wu Sai,Li Wei-Bin,Shi Feng,Jiang Shi-Chun,Lan Ding,Wang Yu-Ren.Observation of colloidal particle deposition during the confined droplet evaporation process[J].Acta Physica Sinica,2015,64(9):96101-096101.
Authors:Wu Sai  Li Wei-Bin  Shi Feng  Jiang Shi-Chun  Lan Ding  Wang Yu-Ren
Institution:1. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;2. Key Laboratory of Microgravity Science, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Abstract:A circular silicone sheet as a masker was used to cover a glass slide, and then the super-hydrophobic coating was sprayed on the glass slide free of silicone sheet masker, thus a round hydrophilic area surrounded by a super-hydrophobic coating is obtained. The PS colloidal droplets are confined in the hydrophilic area, and the droplet volume can be changed within a large range. Variation of the droplet volume influences the initial apparent contact angle. We investigate the particle deposition behavior of the confined colloidal droplet for a hydrophobic apparent contact angle in evaporation process by using an in situ optical observation system. In the whole evaporation process the contact-line of the confined droplet is pinned at the junction between the hydrophilic area and hydrophobic area. In the particle deposition process the main driving flow is different, and the final deposition pattern is controlled by three flow behaviors. In the early stage, the main flow is the Marangoni flow, which drives the particle clusters float on the droplet surfaces, part of them accumulated at the boundaries. As the evaporation proceeds, when the apparent contact angle decreases (<60°), the evaporation flux becomes singular near the contact line, Capillary flow towards the contact inside the drop as a compensation to the solvent loss at the drop boundary, which drives the particles in the droplet to rapidly accumulate at the contact-line. In the last evaporation stage, the thickness of the film in the hydrophilic area becomes very thin, and there is only one layer of particles in this thin film, the thin liquid film instability triggers the particles in the middle area to rapidly aggregate and then form a kind of network pattern, due to the decrease of distances between the particles. Capillary force between particles also takes part in this aggregate process.
Keywords:droplet evaporation  Marangoni flow  capillary flow  thin liquid film instability
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号