首页 | 本学科首页   官方微博 | 高级检索  
     检索      

离子推力器栅极透过率径向分布特性研究
引用本文:龙建飞,张天平,李娟,贾艳辉.离子推力器栅极透过率径向分布特性研究[J].物理学报,2017,66(16):162901-162901.
作者姓名:龙建飞  张天平  李娟  贾艳辉
作者单位:兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000
基金项目:国家自然科学基金(批准号:61601210)、国家重大基础研究项目(批准号:61××34)和重点实验室基金(批准号:9140C55026150C55013)资助的课题.
摘    要:栅极系统是离子推力器的主要组件,其透过率特性对推力器的效率和推力具有重要影响.为了进一步优化栅极性能和有效评估离子推力器效率,对离子推力器栅极透过率径向分布进行研究.采用particle-In-CellMonte Carlo Collision数值仿真方法对束流引出过程进行了模拟.分析了屏栅、加速栅以及栅极系统的透过率随栅孔引出束流离子数量的变化关系,结合放电室出口离子密度分布,进而分别得到屏栅透过率、加速栅透过率和栅极系统透过率的径向分布特性,最后进行实验验证.研究结果表明:屏栅透过率径向分布具有中心对称性,在推力器中心有最小值,从中心沿着径向逐渐增大;加速栅透过率径向分布与屏栅透过率变化趋势相反;栅极系统透过率受加速栅透过率的影响很小,其径向分布与屏栅透过率径向分布相近;离子推力器栅极总透过率随着束流增大而缓慢减小.研究结果可为离子推力器栅极优化提供参考.

关 键 词:离子推力器  栅极系统  透过率  粒子模拟
收稿时间:2017-03-18

Optical transparency radial distribution of ion thruster
Long Jian-Fei,Zhang Tian-Ping,Li Juan,Jia Yan-Hui.Optical transparency radial distribution of ion thruster[J].Acta Physica Sinica,2017,66(16):162901-162901.
Authors:Long Jian-Fei  Zhang Tian-Ping  Li Juan  Jia Yan-Hui
Institution:Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Abstract:The optical system is one of the main components of an ion thruster, which consists of electrically biased multi-aperture grids. The grid design is critical to the ion thruster operation since its transparency has an important influence on the thruster efficiency and thrust. To further optimize the optical system performance and evaluate effectively the efficiency of ion thruster, the optical transparency radial distribution of ion thruster is analyzed and discussed in experiment and simulation. The process of beam extraction is simulated by the particleincell-Monte Carlo collision (PIC-MCC) method, and the movement of the ions is investigated by the PIC method while the collisions of particles are handled by the MCC method. Then the interdependency among the transparency of screen grid, the accelerator grid, optics system and the number of ion extracted is analyzed. Taking into account the distribution of ion density at the exit of discharge chamber, the radial distribution of the screen grid transparency, accelerator grid transparency and optical system transparency are acquired. An experiment is performed to verify the simulation based derivation, indicating the good agreement between experimental and simulation results. The results show that the radial distribution of screen grid transparency increases gradually along the radial direction and has a good central axial symmetry, and its minimum value is located in the center of the thruster while the maximum value is near the margin region of screen gird. The radial distribution of accelerator grid transparency is opposite to that of the screen grid transparency, which decreases along the radial direction, and its maximum value is located at the axis of the thruster. The radial distribution of optical system transparency is the same as that of the screen grid transparency. And its minimum value is in the center of optics system, which indicates that the effect of accelerator grid transparency on the optical system transparency is little. In addition, the study also finds that the total optical transparency of ion thruster decreases slowly as the beam current increases. This work will provide a lot of support for the optimal design of ion thruster optics system.
Keywords:ion thruster  optics  transparency  particle in cell
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号