首页 | 本学科首页   官方微博 | 高级检索  
     检索      

退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响
引用本文:程萍,张玉明,张义门.退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响[J].物理学报,2011,60(1):17103-017103.
作者姓名:程萍  张玉明  张义门
作者单位:西安电子科技大学微电子学院,宽禁带半导体材料与器件教育部重点实验室,西安 710071
基金项目:国家自然科学基金(批准号: 60876061),预研基金(批准号: 9140A08050508)和陕西省13115创新工程(批准号: 2008ZDKG-30)资助的课题.
摘    要:10 K条件下,采用光致发光(PL)技术研究了不同退火处理后非故意掺杂4H-SiC外延材料的低温PL特性.结果发现,在370—400 nm范围内出现了三个发射峰,能量较高的峰约为3.26 eV,与4H-SiC材料的室温禁带宽度相当.波长约为386 nm和388 nm的两个发射峰分别位于~3.21 eV和~3.19 eV,与材料中的N杂质有关.当退火时间为30 min时,随退火温度的升高,386 nm和388 nm两个发射峰的PL强度先增加后减小,且退火温度为1573 K时,两个发射峰的PL强度均达到最大. 关键词: 光致发光 退火处理 能级 4H-SiC

关 键 词:光致发光  退火处理  能级  4H-SiC
收稿时间:2010-01-27

Effect of annealing treatment on the 386 nm and 388 nm emission peaks in unintentionally doped 4H-SiC epilayer
Cheng Ping,Zhang Yu-Ming,Zhang Yi-Men.Effect of annealing treatment on the 386 nm and 388 nm emission peaks in unintentionally doped 4H-SiC epilayer[J].Acta Physica Sinica,2011,60(1):17103-017103.
Authors:Cheng Ping  Zhang Yu-Ming  Zhang Yi-Men
Institution:Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract:Under different annealing treatment conditions, the low temperature PL properties of unintentionally doped 4H-SiC epilayer have been studied by photoluminescence (PL) technique at 10 K. The results show that there are three emission peaks in the range from 370 nm to 400 nm and the maximum energy is about 3.26 eV, which is in accordance with the energy gaps (Eg) of 4H-SiC at room temperature. The 386 nm and 388 nm peaks (corresponding to ~3.21 eV and ~3.19 eV, respectively) are related with N impurity. When keeping annealing time at 30 min, the PL intensity of 386 nm and 388 nm peaks increases and then decreases with the annealing temperature increasing and reaches a maximum at 1573 K. The PL at 386 nm and 388nm change in quite the same manner with annealing time during isothermal annealing at temperature of 1573 K, whereas the difference is small. With the same annealing treatment, the low temperature PL results of 386 nm and 388 nm coincide with that of intrinsic defects in unintentionally doped 4H-SiC, which results from the interaction of infinitesimal disturbance potential energy between N impurity and native defects.
Keywords:photoluminescence  annealing treatment  energy level  4H-SiC
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号