首页 | 本学科首页   官方微博 | 高级检索  
     检索      

新型硒化锑材料及其光伏器件研究进展
引用本文:薛丁江,石杭杰,唐江.新型硒化锑材料及其光伏器件研究进展[J].物理学报,2015,64(3):38406-038406.
作者姓名:薛丁江  石杭杰  唐江
作者单位:华中科技大学, 武汉光电国家实验室(筹), 武汉 430074
基金项目:国家自然科学基金(批准号:91433105;21403078)资助的课题.* Project supported by the National Natural Science Foundation of China
摘    要:硒化锑(Sb2Se3)是一种二元单相化合物, 原料储量大、毒性低、价格便宜; 同时其禁带宽度合适(~1.15 eV), 吸光系数大(>105 cm-1), 长晶温度低, 非常适合制作新型低成本低毒的薄膜太阳能电池, 理论光电转换效率可达30%以上. 目前文献报道的Sb2Se3薄膜太阳能电池效率已达3.7%, 初步证明了Sb2Se3材料在薄膜太阳能电池应用方面的巨大潜力. 本文综述了近年来Sb2Se3太阳能电池的研究进展, 着重介绍了Sb2Se3的材料特性和薄膜制备及相关理论研究, 阐述了不同结构电池器件的研究进展, 并对其发展趋势进行了展望.

关 键 词:硒化锑  薄膜太阳能电池
收稿时间:2014-10-20

Recent progress in material study and photovoltaic device of Sb2Se3
Xue Ding-Jiang,Shi Hang-Jie,Tang Jiang.Recent progress in material study and photovoltaic device of Sb2Se3[J].Acta Physica Sinica,2015,64(3):38406-038406.
Authors:Xue Ding-Jiang  Shi Hang-Jie  Tang Jiang
Institution:Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:Recently, antimony selenide (Sb2Se3) has been proposed as an alternative earth-abundant absorber material for thin film solar cells. Sb2Se3 is a simple V2-VI3 binary compound with an orthorhombic crystal structure and a space group of Pnma 62. It is a staggered layered compound consisting of parallel 1D (Sb4Se6)n ribbons held together by weak van der Waals forces. Sb2Se3 has a direct band gap of approximately 1.15 eV with a large absorption coefficient (>105 cm-1, at short wavelength) and a low grain growth temperature (~300^{o}C), facilitating the fabrication of low-cost thin film solar cells. Moreover, it is a simple binary compound in single phase with a fixed composition, which provides a much simpler growth chemistry than the multicomponent Cu2ZnSn(S,Se)4. In addition, it is stable upon exposure to the ambient air, thus having a better prospect for long-term stability than the organic-inorganic halide perovskite solar cells. Theoretical analysis indicates that the efficiency limit is >30% for single junction Sb2Se3 solar cells. Various approaches, including vacuum evaporation, electrodeposition, spray pyrolysis, and chemical bath deposition (CBD), have been explored to produce Sb2Se3 thin films; however, it is only in these years that Sb2Se3 solar cells have been reported by our group as well as by others. Seok's group presented the deposition of Sb2Se3 on mesoporous TiO2 films by thermal decomposition of Sb2Se3 single-source precursors, and fabricated Sb2Se3-sensitized inorganic-organic heterojunction solar cells with a remarkable efficiency of 3.21%. Tena-Zaera's group fabricated the FTO/TiO2/Sb2Se3/CuSCN/Au heterojunction device and achieved 2.1% device efficiency; their Sb2Se3 was obtained by an electrodeposition route and CuSCN served as a hole conducting layer. Different from the above Sb2Se3-sensitized solar cells reported by other groups, our group is the first in the world working on Sb2Se3 thin film solar cells so far as wu know. We have fabricated a hydrazine solution-processed TiO2/Sb2Se3 heterojunction solar cell, achieving 2.26% device efficiency (Voc = 0.52 V, Jsc = 10.3 mA/cm2 and m FF = 42.3%). In addition to the solution processing method, thermal-evaporated substrate and superstrate CdS/Sb2Se3 thin film solar cells with 2.1% and 1.9% efficiencies respectively were also demonstrated by our group. Recently, we have further improved the superstrate device performance to 3.7% (Voc=0.335 V, Jsc=24.4 mA/cm2, and m FF=46.8%$) by using a post selenization step. Selenization can compensate the Se loss during thermal evaporation, attenuate selenium vacancy-related recombination loss and hence improve the device performance. In summary, this paper summarizes the recent research progress in Sb2Se3-related researches, including material properties of Sb2Se3, synthesis of Sb2Se3 nanomaterials and thin films, theoretical studies on electrical properties, device configuration and efficiency improvement of Sb2Se3 sensitized and thin film solar cells. This review also presents a perspective on future development of Sb2Se3 solar cells.
Keywords:antimony selenide  thin-film solar cells
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号