首页 | 本学科首页   官方微博 | 高级检索  
     检索      

梯度掺杂与均匀掺杂GaN光电阴极的对比研究
引用本文:王晓晖,常本康,钱芸生,高频,张益军,郭向阳,杜晓晴.梯度掺杂与均匀掺杂GaN光电阴极的对比研究[J].物理学报,2011,60(4):47901-047901.
作者姓名:王晓晖  常本康  钱芸生  高频  张益军  郭向阳  杜晓晴
作者单位:(1)南京理工大学电子工程与光电技术学院,南京 210094; (2)重庆大学光电工程学院,重庆 400030
基金项目:国家自然科学基金(批准号:60871012,60701013)资助的课题.
摘    要:为了提高负电子亲和势(NEA)GaN光电阴极的量子效率,利用金属有机化合物化学气相淀积(MOCVD)外延生长了梯度掺杂反射式GaN光电阴极,其掺杂浓度由体内到表面依次为1×1018 cm-3,4×1017 cm-3,2×1017 cm-3和6×1016 cm-3,每个掺杂浓度区域的厚度约为45 nm,总的厚度为180 nm.在超高真 关键词: NEA GaN光电阴极 梯度掺杂 量子效率 能带结构

关 键 词:NEA  GaN光电阴极  梯度掺杂  量子效率  能带结构
收稿时间:2010-06-25

Comparison between gradient-doping and uniform-doping GaN photocathodes
Wang Xiao-Hui,Chang Ben-Kang,Qian Yun-Sheng,Gao Pin,Zhang Yi-Jun,Guo Xiang-Yang,Du Xiao-Qing.Comparison between gradient-doping and uniform-doping GaN photocathodes[J].Acta Physica Sinica,2011,60(4):47901-047901.
Authors:Wang Xiao-Hui  Chang Ben-Kang  Qian Yun-Sheng  Gao Pin  Zhang Yi-Jun  Guo Xiang-Yang  Du Xiao-Qing
Institution:Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science & Technology, Nanjing 210094, China;College of Optoelectronic Engineering, Chongqing University, Chongqing 400030, China
Abstract:In order to enhance the quantum efficiencies of negative electron affinity (NEA) GaN photocathodes, gradient-doping reflection-mode GaN photocathodes are grown by metal organic chemical vapor deposition (MOCVD)at doping concentrations of 1×1018cm-3, 4×1017cm-3, 2×1017cm-3 and 6×1016cm-3 from the body to the surface, with the thickness of each doping region being about 45nm and the total thickness of GaN 180 nm. The gradient-doping GaN photocathodes are activated in an ultra-high vacuum system and are compared with two kinds of uniform-doping GaN photocathodes whose thicknesses are both 150 nm and doping concentrations are 1.6×1017cm-3 and 3×1018cm-3 separately. The results show that both the photocurrent growth rate and the maximum photocurrent of the gradient-doping GaN photocathodes are greater than those of the uniform-doping GaN in the Cs/O activation process, and the multi-test system measured maximum quantum efficiency of the gradient-doping NEA GaN photocathode is about 56% which is as high as the double of the uniform-doping. Calculations show that the energy band bendings of the gradient-doping GaN photocathodes are 0.024eV, 0.018eV and 0.031eV from the body to the surface, a larger electron drift and diffusion length are gained due to the built-in electric field formed by the energy band bending, because of the 0.073eV total energy band bending the photoelectrons reaching the surface have higher energies and pass through the surface barrier more easily. Therefore the gradient-doping NEA GaN photocathodes have greater quantum efficiencies.
Keywords:NEA GaN photocathodes  gradient-doping  quantum efficiency  energy band structure
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号