首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanical characterization of hyperelastic materials with fringe projection and optimization techniques
Authors:Katia Genovese  Luciano Lamberti  Carmine Pappalettere  
Institution:aDipartimento di Ingegneria e Fisica dell’Ambiente, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100 Potenza, Italy;bDipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Viale Japigia, 182-71026 Bari, Italy
Abstract:This paper presents a new hybrid technique for mechanical characterization of hyperelastic materials. The research is motivated by the fact that standard identification procedures based on the fitting of strain–stress curves determined experimentally from planar biaxial tests may be inaccurate for non-uniform states of deformation. Therefore, we propose an alternative approach where the difference Ω between the displacement field measured with Projection Moiré and its counterpart predicted by FEM is minimized using non-linear optimization algorithms that finally find unknown material properties.In order to check the feasibility of the new procedure, we considered a thin latex membrane modelling it as a two-parameter Mooney–Rivlin (MR) hyperelastic material. The Ω function is minimized either using optimization routines available in a commercial finite element package and by implementing a global optimizer able to deal with non-linearity and non-convexity included in the identification process. In order to check accuracy of optimization results, target values of MR constants for the latex specimen tested have previously been determined by fitting experimental stress–strain data gathered from a standard planar biaxial tension test.Results indicate that the present hybrid identification procedure can determine accurately properties of the hyperelastic material under investigation. In fact, the average residual error on displacements was less than 1% while the difference between the MR constants found with optimization and their target values was less than 3.5%.
Keywords:Hyperelastic materials  Mooney–  Rivlin constants  Moiré    Optimization algorithms
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号