首页 | 本学科首页   官方微博 | 高级检索  
     检索      

电磁波在周期介质中的传播及二维光子晶体的光子带结构
引用本文:阿不都热苏力,帕尔哈提.电磁波在周期介质中的传播及二维光子晶体的光子带结构[J].发光学报,2003,24(2):125-129.
作者姓名:阿不都热苏力  帕尔哈提
作者单位:新疆大学, 物理系, 新疆, 乌鲁木齐, 830046
基金项目:国家自然科学基金资助项目(60168001)
摘    要:光子晶体是光学与凝聚态物理交叉的新领域,也是近年来应用物理学的一个重要研究领域,它是一种由介电常数高的(低的)介质在另一种介电常数低的(高的)背景介质中周期排列所组成的人造多维周期结构材料,能够产生光子带隙。频率落在带隙内的光在晶体里沿任何方向都不能传播,因而具有能够抑制原子、分子的自发辐射等诱人的光电子学特性,在基础研究和实际应用上都有着巨大的潜力。本文在这一领域里进行了富有成效的研究,获得了很好的结果。主要有:(1)利用平面波展开方法来计算二维光子晶体的带隙结构。首先,我们设计正方晶胞的二维光子晶体模型。设x3方向为介质柱的轴方向,二维周期结构在x1-x2平面上。晶胞的晶格常数为a,半径为r,介质柱和空气柱的介电常数分别为εa=17和εb=1,a>2r。设计的核心思想是通过降低光子晶体结构的对称性,消除光子能带在晶体的布里渊区高对称点上的本征简并。(2)对于二维光子晶体的电磁波理论及周期介质中的Bloch波解做了详细的推导,给出了光子晶体中禁带存在的理论依据。同时以正方格子晶格的二维光子晶体为例,验证了电介质在空气圆孔中的排列存在E偏振和H偏振的光子带隙重叠区,称为绝对光子带隙。对于二维的光子晶体,两种本征偏振模式的光子能带结构可以独立地调节,以实现两者的光子带隙的最优重叠, 从而大大提高了二维光子晶体的完全带隙宽度。

关 键 词:光子晶体  正方格子  平面波展开法  光子能带结构
文章编号:1000-7032(2003)02-0125-05
收稿时间:2002-05-20
修稿时间:2002年5月20日

Electromagnetic Waves Propagation in Periodic Medium and Two Dimensional Photonic Band Structure
Abdurusul,Parhat.Electromagnetic Waves Propagation in Periodic Medium and Two Dimensional Photonic Band Structure[J].Chinese Journal of Luminescence,2003,24(2):125-129.
Authors:Abdurusul  Parhat
Institution:Department of Physics, Xinjiang University, Urumuqi 830046, China
Abstract:Photonic crystal is a new field which combines optics and condensed matter physics. It is also a great important research field of applied physics in recent years.This is an artificial multi-dimension periodic structure in the two background media which possess different dielectric constants. It is so called beca use its structure and characteristics resemble that of solid crystal. Photonicb and gap (PBG) structure is a periodic modulation of dielectric and it can exhibit "forbidden" frequency regions where electromagnetic waves can not propagate along any directions in the crystal. This may bring about some peculiar physical phenomena, as well as wide applications in several scientific and technical areas. Some great a chievements made in this paperare listed as follows. (1) PBG structures with absolute band gaps are designed via the calculation of photonic band structures by plane-wave expansion method. A two-dimensional photonic crystal is periodic along two of its axes and homogeneous along the third. A typical specimen, consisting of a square lattice of dielectric columns is shown in Fig.1. For certain values of the column, spacing this crystal can have a photonic band gap in the x1-x2 plane. The rods forming photonic crystal are characterized by a dielectric constant εa=17,they are embedded in a background medium whose dielectric constant is εb=1.The rods are of circular cross-section with radius r and the lattice constant of the square lattice is a with a>2r. The main idea is to lift the band degeneracy at high symmetry points in the Bril louin zone of crystals by lowering the structure symmetry of crystal. (2) It also gives a complete deduction for the electromagnetic wave theory of photonic crystal of two dimensions and Bloch wave solution in stratified periodic dielectric, offers the academic foundation of the existence of stop band, and for an example of two dimensional photonic crystal of square lattice demonstrates that dielectric rods in air background can generate a common band gap, which is called absolute photonic band gap, for both orthogonal polarization E and H.As to two dimensional (2D) PBG structures, a novel method is applied to substantially improve absolute band gaps by quasi-independently adjusting the refractive indices for E-polarization and H-polarization modes. This is acco mplished b y fabricating 2D PBG structures from an isotropic materials and selecting the extraordinaryaxis of uniaxial crystal parallel to the extension direction of cylinders. Such a novel mechanism should open up a new scope to design 2D photonic band gaps.
Keywords:photonic crystal  square lattice  plane wave ex pansion method  photonic band structure
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《发光学报》浏览原始摘要信息
点击此处可从《发光学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号