首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission
Authors:Bian Lin
Institution:Department of Hearing and Speech, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA. lbain@kumc.edu
Abstract:Distortion product otoacoustic emissions (DPOAEs) are generated from the nonlinear transduction n cochlear outer hair cells. The transducer function demonstrating a compressive nonlinearity can be estimated from low-frequency modulation of DPOAEs. Experimental results from the gerbils showed that the magnitude of quadratic difference tone (QDT, f2-f1) was either enhanced or suppressed depending on the phase of the low-frequency bias tone. Within one period of the bias tone, QDT magnitudes exhibited two similar modulation patterns, each resembling the absolute value of the second derivative of the transducer function. In the time domain, the center notches of the modulation patterns occurred around the zero crossings of the bias pressure, whereas peaks corresponded to the increase or decrease in bias pressure. Evaluated with respect to the bias pressure, modulated QDT magnitude displayed a double-modulation pattern marked by a separation of the center notches. Loading/unloading of the cochlear transducer or rise/fall in bias pressure shifted the center notch to positive or negative sound pressures, indicating a mechanical hysteresis. These results suggest that QDT arises from the compression that coexists with the active hysteresis in cochlear transduction. Modulation of QDT magnitude reflects the dynamic regulation of cochlear transducer gain and compression.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号