首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles
Authors:Sijl Jeroen  Dollet Benjamin  Overvelde Marlies  Garbin Valeria  Rozendal Timo  de Jong Nico  Lohse Detlef  Versluis Michel
Institution:Physics of Fluids Group and MIRA Institute of Biomedical Engineering and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
Abstract:Coated microbubbles, unlike tissue are able to scatter sound subharmonically. Therefore, the subharmonic behavior of coated microbubbles can be used to enhance the contrast in ultrasound contrast imaging. Theoretically, a threshold amplitude of the driving pressure can be calculated above which subharmonic oscillations of microbubbles are initiated. Interestingly, earlier experimental studies on coated microbubbles demonstrated that the threshold for these bubbles is much lower than predicted by the traditional linear viscoelastic shell models. This paper presents an experimental study on the subharmonic behavior of differently sized individual phospholipid coated microbubbles. The radial subharmonic response of the microbubbles was recorded with the Brandaris ultra high-speed camera as a function of both the amplitude and the frequency of the driving pulse. Threshold pressures for subharmonic generation as low as 5 kPa were found near a driving frequency equal to twice the resonance frequency of the bubble. An explanation for this low threshold pressure is provided by the shell buckling model proposed by Marmottant et al. J. Acoust. Soc. Am. 118, 3499-3505 (2005)]. It is shown that the change in the elasticity of the bubble shell as a function of bubble radius as proposed in this model, enhances the subharmonic behavior of the microbubbles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号