首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Internal circulation in a drop in an acoustic field
Authors:Zhao H  Sadhal S S  Trinh E H
Institution:Aerospace & Mechanical Engineering Department, University of Southern California, Los Angeles 90089-1453, USA.
Abstract:An investigation of the internal flow field for a drop at the antinode of a standing wave has been carried out. The main difference from the solid sphere case is the inclusion of the shear stress and velocity continuity conditions at the liquid-gas interface. To the leading order of calculation, the internal flow field was found to be quite weak. Also, this order being fully time dependent has a zero mean flow. At the next higher order, steady internal flows are predicted and, as in the case of a solid sphere, there is a recirculating layer consisting of closed streamlines near the surface. In the case of a liquid drop, however, the behavior of this recirculating Stokes layer is quite interesting. It is predicted that the layer ceases to have recirculation when formula: see text], where symbol: see text] is the liquid viscosity, mu is the exterior gas-phase viscosity, and M is the dimensionless frequency parameter for the gas phase, defined by M = i omega a2 rho/mu, with a being the drop radius. Thorough experimental confirmation of this interesting new development needs to be conducted. Although it seems to agree with many experiments with levitated drops where no recirculating layer has been clearly observed, a new set of experiments for specifically testing this interesting development need to be carried out.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号