首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scale and space localization in the Kuramoto-Sivashinsky equation
Authors:Wittenberg Ralf W  Holmes Philip
Institution:Program in Applied and Computational Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544.
Abstract:We describe a wavelet-based approach to the investigation of spatiotemporally complex dynamics, and show through extensive numerical studies that the dynamics of the Kuramoto-Sivashinsky equation in the spatiotemporally chaotic regime may be understood in terms of localized dynamics in both space and scale (wave number). A projection onto a spline wavelet basis enables good separation of scales, each with characteristic dynamics. At the large scales, one observes essentially slow Gaussian dynamics; at the active scales, structured "events" reminiscent of traveling waves and heteroclinic cycles appear to dominate; while the strongly damped small scales display intermittent behavior. The separation of scales and their dynamics is invariant as the length of the system increases, providing additional support for the extensivity of the spatiotemporally complex dynamics claimed in earlier works. We show also that the dynamics are spatially localized, discuss various correlation lengths, and demonstrate the existence of a characteristic interaction length for instantaneous influences. Our results motivate and advance the search for localized, low-dimensional models that capture the full behavior of spatially extended chaotic partial differential equations. (c) 1999 American Institute of Physics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号