首页 | 本学科首页 官方微博 | 高级检索
 全部专业 化学 晶体学 力学 数学 物理学 学报及综合类   按 中文标题 英文标题 中文关键词 英文关键词 中文摘要 英文摘要 作者中文名 作者英文名 单位中文名 单位英文名 基金中文名 基金英文名 杂志中文名 杂志英文名 栏目英文名 栏目英文名 DOI 责任编辑 分类号 杂志ISSN号 检索

 一类重尾风险因子的模拟及其投资高风险值和置信区间的估计 引用本文： 汪浩.一类重尾风险因子的模拟及其投资高风险值和置信区间的估计[J].应用概率统计,2003,19(3):267-276. 作者姓名： 汪浩 作者单位： 俄勒冈大学数学系,美国 摘    要： 由于金融市场中的日周期或短周期对数回报率的样本数据多数呈现胖尾分布，于是现有的正态或对数正态分布模型都在不同程度上失效，为了准确模拟这种胖尾分布和提高投资风险估计及金融管理，本文引进了一种可根据实际金融市场数据作出调正的蒙特卡洛模拟方法．这个方法可以有效地复制金融产品价格的日周期对数回报率数据的胖尾分布．结合非参数估计方法，利用该模拟方法还得到投资高风险值以及高风险置信区间的准确估计。 关 键 词： 风险值  风险置信区间  胖尾分布  蒙特卡罗模拟 Simulation and Extreme VaR and VaR Confidence Interval Estimation for a Class of Heavy-Tailed Risk Factors WANG HAO.Simulation and Extreme VaR and VaR Confidence Interval Estimation for a Class of Heavy-Tailed Risk Factors[J].Chinese Journal of Applied Probability and Statisties,2003,19(3):267-276. Authors: WANG HAO Abstract: This paper introduces a calibrated scenario generation method to estimate extreme Value-at-Risk (VaR) and Value-at-Risk confidence interval (VaR CI) of a portfolio with single risk factor which has heavy tailed distribution. It is well known that lot of financial, daily log-return data demonstrate heavy-tailed distribution. This makes all the models with normally, even log-normally distributed assumption become disabled (see 25]). We handle the daily return data with heavy tailed distribution and use a model of log-mixture of normal distributions to calibrate mean, variance, kurtosis, and sixth moment and fit the empirical distribution. An extreme value is a rare event and not easy to be observed. However, once it occurs, it brings disaster to any involved financial institute and financial practitioners. Therefore, undoubtedly how to effectively estimate the portfolio extreme VaR and VaR CI is a primary concern in risk management. In this paper, we will use a non-parametric method to derive portfolio extreme VaR and VaR confidence interval estimates for heavy-tailed distributions based on scenarios which are generated with calibration. Keywords: VaR  VaR CI  heavy tails  Monte Carlo simulation 本文献已被 CNKI 维普 万方数据 等数据库收录！