首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Couple stress fluid flow with variable properties: A second law analysis
Authors:Srinivas Jangili  Samuel Olumide Adesanya  Hammed Abiodun Ogunseye  Ramoshweu Lebelo
Abstract:The present work examines the combined influence of variable thermal conductivity and viscosity on the irreversibility rate in couple stress fluid flow in between asymmetrically heated parallel plates. The dimensionless fluid equations are solved by using homotopy analysis method (HAM) and validated with Runge‐Kutta shooting method (RKSM). The convergent series solution is then used for the irreversibility analysis in the flow domain. The effects of thermal conductivity and viscosity variation parameters, couple stress parameter, Reynolds number, Grashof number, Hartmann number on the velocity profile, temperature distribution, entropy production, and heat irreversibility ratio are presented through graphs, and salient features of the solutions are discussed. The computations show that the entropy production rate decreases with increased magnetic field and thermal conductivity parameters, whereas it rises with increasing values of couple stress parameter, Brinkman number, viscosity variation parameter, and Grashof number. The study is relevant to lubrication theory.
Keywords:Bejan number  entropy generation number  homotopy analysis method  mixed convection  variable thermal conductivity  variable viscosity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号