首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On mechanical waves and Doppler shifts from moving boundaries
Authors:Ivan C Christov  Christo I Christov
Institution:1. Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA;2. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
Abstract:We investigate the propagation of infinitesimal harmonic mechanical waves emitted from a boundary with variable velocity and arriving at a stationary observer. In the classical Doppler effect, Xs(t)=vt is the location of the source with constant velocity v. In the present work, however, we consider a source co‐located with a moving boundary x=Xs(t), where Xs(t) can have an arbitrary functional form. For ‘slowly moving’ boundaries (i.e., ones for which the timescale set by the mechanical motion is large in comparison to the inverse of the frequency of the emitted wave), we present a multiple‐scale asymptotic analysis of the moving boundary problem for the linear wave equation. We obtain a closed‐form leading‐order (with respect to the latter small parameter) solution and show that the variable velocity of the boundary results not only in frequency modulation but also in amplitude modulation of the received signal. Consequently, our results extend the applicability of two basic tenets of the theory of a moving source on a stationary domain, specifically that (i) urn:x-wiley:mma:media:mma4318:mma4318-math-0001 for non‐uniform boundary motion can be inserted in place of the constant velocity v in the classical Doppler formula and (ii) that the non‐uniform boundary motion introduces variability in the amplitude of the wave. The specific examples of decelerating and oscillatory boundary motion are worked out and illustrated. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:Doppler effect  accelerating source  multiple‐scales expansion  wave equation  moving boundary
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号