首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parameter optimization and uncertainty analysis in a model of oceanic CO2 uptake using a hybrid algorithm and algorithmic differentiation
Authors:J Rückelt  V Sauerland  T Slawig  A Srivastav  B Ward  C Patvardhan
Institution:1. Institut für Informatik, Christian-Albrechts-Universität Kiel, Germany;2. National Oceanographic Centre, Southampton, UK;3. Deemed University, Faculty of Engineering, Dayalbagh, Agra, India
Abstract:Methods and results for parameter optimization and uncertainty analysis for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Schartau and Oschlies, simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. Our aim is to identify parameters and fit the model output to given observational data. For this model, it has been shown that a satisfactory fit could not be obtained, and that parameters with comparable fits can vary significantly. Since these results were obtained by evolutionary algorithms (EA), we used a wider range of optimization methods: A special type of EA (called quantum-EA) with coordinate line search and a quasi-Newton SQP method, where exact gradients were generated by Automatic/Algorithmic Differentiation. Both methods are parallelized and can be viewed as instances of a hybrid, mixed evolutionary and deterministic optimization algorithm that we present in detail. This algorithm provides a flexible and robust tool for parameter identification and model validation. We show how the obtained parameters depend on data sparsity and given data error. We present an uncertainty analysis of the optimized parameters w.r.t. Gaussian perturbed data. We show that the model is well suited for parameter identification if the data are attainable. On the other hand, the result that it cannot be fitted to the real observational data without extension or modification, is confirmed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号