首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reduction of three-dimensional dynamical elasticity theory problems with arbitrarily located plane slits to integral equations
Authors:V V Mykhas'kiv  M V Khai
Abstract:By generalizing a method described earlier /1/ for reducing three-dimensional dynamical problems of elasticity theory for a body with a slit to integral equations, integral equations are obtained for an infinite body with arbitrarily located plane slits. The interaction of disc-shaped slits located in one plane is investigated when normal external forces that vary sinusoidally with time (steady vibrations) are given on their surfaces.

Problems of the reduction of dynamical three-dimensional elasticity theory problems to integral equations for an infinite body weakened by a plane slit were examined in /1, 2/. The solution of the initial problem is obtained in /1/ by applying a Laplace integral transform in time to the appropriate equations and constructing the solution in the form of Helmholtz potentials with densities characterizing the opening of the slit during deformation of the body. The problem under consideration is solved in /2/ by using the fundamental Stokes solution /3/ with subsequent construction of the solution in the form of an analogue of the elastic potential of a double layer.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号