首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The tail behaviour of a random sum of subexponential random variables and vectors
Authors:D J Daley  Edward Omey  Rein Vesilo
Institution:1. Centre for Mathematics and its Applications, The Australian National University, 0200, Canberra, ACT, Australia
2. Economische Hogeschool Sint-Aloysius, Brussels, Belgium
3. Department of Electronics, Macquarie University, 2019, Sydney, NSW, Australia
Abstract:Let $\left\{ X,X_{i},i=1,2,...\right\} $ denote independent positive random variables having common distribution function (d.f.) F(x) and, independent of X, let ν denote an integer valued random variable. Using X 0=0, the random sum Z=∑ i=0 ν X i has d.f. $G(x)=\sum_{n=0}^{\infty }\Pr\{\nu =n\}F^{n\ast }(x)$ where F n?(x) denotes the n-fold convolution of F with itself. If F is subexponential, Kesten’s bound states that for each ε>0 we can find a constant K such that the inequality $$ 1-F^{n\ast }(x)\leq K(1+\varepsilon )^{n}(1-F(x))\, , \qquad n\geq 1,x\geq 0 \, , $$ holds. When F is subexponential and E(1 +ε) ν <∞, it is a standard result in risk theory that G(x) satisfies $$ 1 - G{\left( x \right)} \sim E{\left( \nu \right)}{\left( {1 - F{\left( x \right)}} \right)},\,\,x \to \infty \,\,{\left( * \right)} $$ In this paper, we show that (*) holds under weaker assumptions on ν and under stronger conditions on F. Stam (Adv. Appl. Prob. 5:308–327, 1973) considered the case where $ \overline{F}(x)=1-F(x)$ is regularly varying with index –α. He proved that if α>1 and $E{\left( {\nu ^{{\alpha + \varepsilon }} } \right)} < \infty $ , then relation (*) holds. For 0<α<1, it is sufficient that Eν<∞. In this paper we consider the case where $\overline{F}(x)$ is an O-regularly varying subexponential function. If the lower Matuszewska index $\beta (\overline{F})<-1$ , then the condition ${\text{E}}{\left( {\nu ^{{{\left| {\beta {\left( {\overline{F} } \right)}} \right|} + 1 + \varepsilon }} } \right)} < \infty$ is sufficient for (*). If $\beta (\overline{F} )>-1$ , then again Eν<∞ is sufficient. The proofs of the results rely on deriving bounds for the ratio $\overline{F^{n\ast }}(x)/\overline{F} (x)$ . In the paper, we also consider (*) in the special case where X is a positive stable random variable or has a compound Poisson distribution derived from such a random variable and, in this case, we show that for n≥2, the ratio $\overline{F^{n\ast }}(x)/\overline{F}(x)\uparrow n$ as x↑∞. In Section 3 of the paper, we briefly discuss an extension of Kesten’s inequality. In the final section of the paper, we discuss a multivariate analogue of (*).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号