首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hardware-in-the-loop experimental study on a fractional order networked control system testbed
Institution:1. College of Mathematics, Qingdao University, Qingdao 266071, P.R. China;2. College of Information Science and Engineering, Ocean University of China, Qingdao 266100, P.R. China;3. Department of Mathematics, Harbin Institute of Technology, Weihai 264209. P.R. China
Abstract:Networked Control Systems (NCS) are of great interest in many industries because of their convenience in data sharing and manipulation remotely. However, there are several problems along with NCS itself due to the uncertainties in network communication. One issue inherent to NCS is the network-induced delays which may deteriorate the performance and may even cause instability of the system. Therefore a controller which can make the plant stable at large values of delay is always desirable in NCS systems. Our past work on Optimal Fractional Order Proportional Integral (OFOPI) controller showed that fractional order PI controllers have larger jitter margin (maximum value of delay for which system is stable) for lag-dominated systems when compared to traditional Proportional Integral Derivative (PID) controllers, whereas integer order PID controllers have larger jitter margin for delay-dominated systems. This paper aims at the design process of a tele-presence controller based on OFOPI tuning rules. To illustrate this, an extensive experimental study on the real-time Smart Wheel networked speed control system is performed using hardware-in-the-loop control. The real-time random delay in the world wide network is collected by pinging different locations, and is considered as the delay in our simulation and experimental systems. Comparisons are made with existing integer order PID controller. It is found that the proposed OFOPI controller is a promising controller and has faster response time than the traditional integer order PID controllers. Since the plant into consideration viz. the Smart Wheel is a delay-dominated system, it is verified that PID achieves larger jitter margin as compared to OFOPI tuning rules. Simulation results and real-time experiments showing comparisons between OFOPI and OPID tuning rules prove the significance of this method in NCS.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号