首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Interaction of Shocks with Dispersive Waves I. Weak Coupling Limit
Authors:Ralph M Axel  Paul K Newton
Abstract:We introduce and analyze a model for the interaction of shocks with a dispersive wave envelope. The model mimicks the Zakharov system from weak plasma turbulence theory but replaces the linear wave equation in that system by a nonlinear wave equation allowing the formation of shocks. This paper considers a weak coupling in which the nonlinear wave evolves independently but appears as the potential in the time-dependent Schrodinger equation governing the dispersive wave. We first solve the Riemann problem for the system by constructing solutions to the Schrodinger equation that are steady in a frame of reference moving with the shock. Then we add a viscous diffusion term to the shock equation and by explicitly constructing asymptotic expansions in the (small) diffusion coefficient, we show that these solutions are zero diffusion limits of the regularized problem. The expansions are unusual in that it is necessary to keep track of exponentially small terms to obtain algebraically small terms. The expansions are compared to numerical solutions. We then construct a family of time-dependent solutions in the case that the initial data for the nonlinear wave equation evolves to a shock as tt* < ∞. We prove that the shock formation drives a finite time blow-up in the phase gradient of the dispersive wave. While the shock develops algebraically in time, the phase gradient blows up logarithmically in time. We construct several explicit time-dependent solutions to the system, including ones that: (a) evolve to the steady states previously constructed, (b) evolve to steady states with phase discontinuities (which we call phase kinked steady states), (c) do not evolve to steady states.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号