首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Infinite Families of Exact Sums of Squares Formulas,Jacobi Elliptic Functions,Continued Fractions,and Schur Functions
Authors:Milne  Stephen C
Institution:(1) Department of Mathematics, The Ohio State University, Columbus, Ohio, 43210
Abstract:In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the eegr-function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing a positive integer by sums of 4n 2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C ell nonterminating 6phgr5 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n 2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared.
Keywords:Jacobi elliptic functions  associated continued fractions  regular C-fractions  Hankel or Turá  nian determinants  Fourier series  Lambert series  Eisenstein series  inclusion/exclusion  Laplace expansion formula for determinants  Schur functions  multiple basic hypergeometric series  C ell nonterminating 6gif" alt="ell" align="BASELINE" BORDER="0"> nonterminating 6phgr5 summation theorem" target="_blank">gif" alt="phgr" align="MIDDLE" BORDER="0">5 summation theorem  lattice sums
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号