首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器学习的智能TWAP和VWAP算法的研究及应用
作者姓名:郑继翔  陈卓  柯军  黄钰  洪轩儒  李怡洁
作者单位:招商证券股份有限公司信息技术中心 ,广东深圳 518000
摘    要:TWAP与VWAP算法为两类较常见的经典交易算法.传统的VWAP算法在TWAP算法的基础上,大多使用预测日内成交量分布的方法指导算法下单.传统成交量分布的预测效果严重依赖于市场交易惯性,但交易量分布受到日内诸多突发因素的影响,导致算法对市场突发状况的应对能力较弱.本文对传统TWAP与VWAP算法进行改进,利用滚动的1分钟粒度高频实时资金博弈数据,基于Logistic分类器训练量价模型,以该预测结果为入参构建最优化期望执行均价模型,求出当下各个价格档位对应委托数量的最优解.通过相对高频的分钟级价格预测机制,保证算法实时跟踪市场行情走势并寻求相对优势的交易机会.该算法经测试可以稳定地跑赢市场均价,具备推广应用的可行性.

关 键 词:算法交易  短期价格预测  机器学习  逻辑回归  TWAP  VWAP
本文献已被 万方数据 等数据库收录!
点击此处可从《经济数学》浏览原始摘要信息
点击此处可从《经济数学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号