首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subgroup regular sets in Cayley graphs
Institution:1. Rongcheng Campus, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, People''s Republic of China;2. School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
Abstract:Let Γ be a graph with vertex set V, and let a and b be nonnegative integers. A subset C of V is called an (a,b)-regular set in Γ if every vertex in C has exactly a neighbors in C and every vertex in V?C has exactly b neighbors in C. In particular, (0,1)-regular sets and (1,1)-regular sets in Γ are called perfect codes and total perfect codes in Γ, respectively. A subset C of a group G is said to be an (a,b)-regular set of G if there exists a Cayley graph of G which admits C as an (a,b)-regular set. In this paper we prove that, for any generalized dihedral group G or any group G of order 4p or pq for some primes p and q, if a nontrivial subgroup H of G is a (0,1)-regular set of G, then it must also be an (a,b)-regular set of G for any 0?a?|H|?1 and 0?b?|H| such that a is even when |H| is odd. A similar result involving (1,1)-regular sets of such groups is also obtained in the paper.
Keywords:Cayley graph  Perfect code  Regular set  Perfect coloring  Perfect 2-coloring
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号