首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generalized Levinson-Durbin sequences, binomial coefficients and autoregressive estimation
Authors:Paul Shaman
Institution:Department of Statistics, University of Pennsylvania, Philadelphia, PA 19104-6340, United States
Abstract:For a discrete time second-order stationary process, the Levinson-Durbin recursion is used to determine the coefficients of the best linear predictor of the observation at time k+1, given k previous observations, best in the sense of minimizing the mean square error. The coefficients determined by the recursion define a Levinson-Durbin sequence. We also define a generalized Levinson-Durbin sequence and note that binomial coefficients form a special case of a generalized Levinson-Durbin sequence. All generalized Levinson-Durbin sequences are shown to obey summation formulas which generalize formulas satisfied by binomial coefficients. Levinson-Durbin sequences arise in the construction of several autoregressive model coefficient estimators. The least squares autoregressive estimator does not give rise to a Levinson-Durbin sequence, but least squares fixed point processes, which yield least squares estimates of the coefficients unbiased to order 1/T, where T is the sample length, can be combined to construct a Levinson-Durbin sequence. By contrast, analogous fixed point processes arising from the Yule-Walker estimator do not combine to construct a Levinson-Durbin sequence, although the Yule-Walker estimator itself does determine a Levinson-Durbin sequence. The least squares and Yule-Walker fixed point processes are further studied when the mean of the process is a polynomial time trend that is estimated by least squares.
Keywords:62M10  05A10  11B65
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号