首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Linking macroscopic deformation processes to microstructure evolution using an FE-FFT-based micro-macro transition and non-conserved phase-fields
Authors:Julian Kochmann  Lisa Ehle  Stephan Wulfinghoff  Bob Svendsen  Stefanie Reese
Institution:1. Institute of Applied Mechanics, RWTH Aachen University, Mies-van-der-Rohe-Str. 1, D-52074 Aachen;2. Gemeinschaftslabor für Elektronmikroskopie, RWTH Aachen University, Mies-van-der-Rohe-Str. 59, D-52074 Aachen;3. Chair of Material Mechanics, RWTH Aachen University, Schinkelstr. 2, D-52062 Aachen
Abstract:The purpose of this work is the multiscale FE-FFT-based prediction of macroscopic material behavior, micromechanical fields and bulk microstructure evolution in polycrystalline materials subjected to macroscopic mechanical loading. The macroscopic boundary value problem (BVP) is solved using implicit finite element (FE) methods. In each macroscopic integration point, the microscopic BVP is embedded, the solution of which is found employing fast Fourier transform (FFT), fixed-point and Green's function methods. The mean material response is determined by the stress-strain relation at the micro scale or rather the volume average of the micromechanical fields. The evolution of the microstructure is modeled by means of non-conserved phase-fields. As an example, the proposed methodology is applied to the modeling of stress-induced martensitic phase transformations in metal alloys. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号