首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Internal Flow Analysis for Slow Moving Small Droplets in Contact with Hydrophobic Surfaces
Authors:Raheel Rasool  Roger A Sauer  Muhammad Osman
Institution:Aachen Institute for Advanced study in Computational Engineering Science, RWTH Aachen University Templergraben 55, 52056 Aachen, Germany
Abstract:Internal fluid flow behavior for slow moving small droplets in contact with hydrophobic surfaces is analyzed. The shape of the droplet is first computed using the Young-Laplace equation. For this purpose a Finite Element (FE) model 1], in which contact constraints are enforced through Penalty and Augmented Lagrange Multiplier methods, is used. The flow field within the droplet is then analyzed using the Stokes flow model, considering a de-coupled approach. Similar to the membrane deformation model, the formulation for the flow analysis is also expressed in the framework of FE analysis. Both, stabilized (Pressure Stabilizing/Petrov-Galerkin PSPG) and Galerkin FE formulations are considered. The motion of the fluid inside the droplet is governed by the slip condition enforced on the membrane of the droplet. Numerical examples for droplets rolling steadily are presented. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号