首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Symbolic models for infinite networks of control systems: A compositional approach
Institution:2. Computer Science Department, University of Colorado Boulder, USA
Abstract:This paper presents a compositional framework for the construction of symbolic models for a network composed of a countably infinite number of finite-dimensional discrete-time control subsystems. We refer to such a network as infinite network. The proposed approach is based on the notion of alternating simulation functions. This notion relates a concrete network to its symbolic model with guaranteed mismatch bounds between their output behaviors. We propose a compositional approach to construct a symbolic model for an infinite network, together with an alternating simulation function, by composing symbolic models and alternating simulation functions constructed for subsystems. Assuming that each subsystem is incrementally input-to-state stable and under some small-gain type conditions, we present an algorithm for orderly constructing local symbolic models with properly designed quantization parameters. In this way, the proposed compositional approach can provide us a guideline for constructing an overall symbolic model with any desired approximation accuracy. A compositional controller synthesis scheme is also provided to enforce safety properties on the infinite network in a decentralized fashion. The effectiveness of our result is illustrated through a road traffic network consisting of infinitely many road cells.
Keywords:Compositionality  Symbolic models  Infinite networks  Large-scale systems  Small-gain condition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号