首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions
Authors:Email author" target="_blank">Xiaodong?LiEmail author
Institution:1.Department of Mathematics,Stanford University,Stanford,USA
Abstract:In this paper, we improve existing results in the field of compressed sensing and matrix completion when sampled data may be grossly corrupted. We introduce three new theorems. (1) In compressed sensing, we show that if the m×n sensing matrix has independent Gaussian entries, then one can recover a sparse signal x exactly by tractable ? 1 minimization even if a positive fraction of the measurements are arbitrarily corrupted, provided the number of nonzero entries in x is O(m/(log(n/m)+1)). (2) In the very general sensing model introduced in Candès and Plan (IEEE Trans. Inf. Theory 57(11):7235–7254, 2011) and assuming a positive fraction of corrupted measurements, exact recovery still holds if the signal now has O(m/(log2 n)) nonzero entries. (3) Finally, we prove that one can recover an n×n low-rank matrix from m corrupted sampled entries by tractable optimization provided the rank is on the order of O(m/(nlog2 n)); again, this holds when there is a positive fraction of corrupted samples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号