首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatiotemporal dynamics on small-world neuronal networks: The roles of two types of time-delayed coupling
Authors:Hao Wu  Huijun Jiang  Zhonghuai Hou
Institution:Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
Abstract:We investigate temporal coherence and spatial synchronization on small-world networks consisting of noisy Terman–Wang (TW) excitable neurons in dependence on two types of time-delayed coupling: {xj(tτ) − xi(t)} and {xj(tτ) − xi(tτ)}. For the former case, we show that time delay in the coupling can dramatically enhance temporal coherence and spatial synchrony of the noise-induced spike trains. In addition, if the delay time τ is tuned to nearly match the intrinsic spike period of the neuronal network, the system dynamics reaches a most ordered state, which is both periodic in time and nearly synchronized in space, demonstrating an interesting resonance phenomenon with delay. For the latter case, however, we cannot achieve a similar spatiotemporal ordered state, but the neuronal dynamics exhibits interesting synchronization transitions with time delay from zigzag fronts of excitations to dynamic clustering anti-phase synchronization (APS), and further to clustered chimera states which have spatially distributed anti-phase coherence separated by incoherence. Furthermore, we also show how these findings are influenced by the change of the noise intensity and the rewiring probability of the small-world networks. Finally, qualitative analysis is given to illustrate the numerical results.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号