首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The analysis of a nested dissection algorithm
Authors:John R Gilbert  Robert Endre Tarjan
Institution:(1) Computer Science Department, Cornell University, 14853 Ithaca, NY, USA;(2) Computer Science Department, Princeton University, 08544 Princeton, NJ, USA
Abstract:Summary Nested dissection is an algorithm invented by Alan George for preserving sparsity in Gaussian elimination on symmetric positive definite matrices. Nested dissection can be viewed as a recursive divide-and-conquer algorithm on an undirected graph; it usesseparators in the graph, which are small sets of vertices whose removal divides the graph approximately in half. George and Liu gave an implementation of nested dissection that used a heuristic to find separators. Lipton and Tarjan gave an algorithm to findn 1/2-separators in planar graphs and two-dimensional finite element graphs, and Lipton, Rose, and Tarjan used these separators in a modified version of nested dissection, guaranteeing bounds ofO (n logn) on fill andO(n 3/2) on operation count. We analyze the combination of the original George-Liu nested dissection algorithm and the Lipton-Tarjan planar separator algorithm. This combination is interesting because it is easier to implement than the Lipton-Rose-Tarjan version, especially in the framework of existïng sparse matrix software. Using some topological graph theory, we proveO(n logn) fill andO(n 3/2) operation count bounds for planar graphs, twodimensional finite element graphs, graphs of bounded genus, and graphs of bounded degree withn 1/2-separators. For planar and finite element graphs, the leading constant factor is smaller than that in the Lipton-Rose-Tarjan analysis. We also construct a class of graphs withn 1/2-separators for which our algorithm does not achieve anO(n logn) bound on fill.The work of this author was supported in part by the Hertz Foundation under a graduate fellowship and by the National Science Foundation under Grant MCS 82-02948The work of this author was supported in part by the National Science Foundation under Grant MCS 78-26858 and by the Office of Naval Research under Contract N00014-76-C-0688
Keywords:AMS(MOS)  05C10  65F05  65F50  CR  G  1  3  G  2  2
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号