首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cavity Volume and Free Energy in Many-Body Systems
Authors:Taylor  Jamie M  Fai  Thomas G  Virga  Epifanio G  Zheng  Xiaoyu  Palffy-Muhoray  Peter
Institution:1.Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
;2.Department of Biology, University of Ottawa, Ottawa, ON, Canada
;3.School of Mathematics and Statistics, Carleton University, Ottawa, ON, Canada
;
Abstract:

Most models for the spread of an invasive species into a new environment are based on Fisher’s reaction–diffusion equation. They assume that habitat quality is independent of the presence or absence of the invading population. Ecosystem engineers are species that modify their environment to make it (more) suitable for them. A potentially more appropriate modeling approach for such an invasive species is to adapt the well-known Stefan problem of melting ice. Ahead of the front, the habitat is unsuitable for the species (the ice); behind the front, the habitat is suitable (the open water). The engineering action of the population moves the boundary ahead (the melting). This approach leads to a free boundary problem. In this paper, we study the well-posedness of a novel free boundary model for the spread of ecosystem engineers that was recently derived from an individual random walk model. The Stefan condition for the moving boundary is replaced by a biologically derived two-sided condition that models the movement behavior of individuals at the boundary as well as the process by which the population moves the boundary to expand their territory. Our proofs consist of several new and novel ideas that can be used in broader contexts. We assign a convex functional to this problem so that the evolution system governed by this convex potential is exactly the system of evolution equations describing the above model. We then apply variational and fixed-point methods to deal with this free boundary problem.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号