首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distribution Functions in Quantum Mechanics and Wigner Functions
Authors:L S Kuz'menko  S G Maksimov
Institution:(1) Moscow State University, Moscow, Russia;(2) Instituto Tecnológico de Morelia, México
Abstract:We formulate and solve the problem of finding a distribution function F(r,p,t) such that calculating statistical averages leads to the same local values of the number of particles, the momentum, and the energy as those in quantum mechanics. The method is based on the quantum mechanical definition of the probability density not limited by the number of particles in the system. The obtained distribution function coincides with the Wigner function only for spatially homogeneous systems. We obtain the chain of Bogoliubov equations, the Liouville equation for quantum distribution functions with an arbitrary number of particles in the system, the quantum kinetic equation with a self-consistent electromagnetic field, and the general expression for the dielectric permittivity tensor of the electron component of the plasma. In addition to the known physical effects that determine the dispersion of longitudinal and transverse waves in plasma, the latter tensor contains a contribution from the exchange Coulomb correlations significant for dense systems.
Keywords:Wigner function  microscopic BBGKY hierarchy  kinetic equation  Coulomb correlations
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号