首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonstandard perturbation approximation and travelling wave solutions of nonlinear reaction diffusion equations
Authors:Aditya Kaushik
Institution:INRIA, Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Libération F33405 Cedex Talence, France
Abstract:This paper deals with the construction of a nonstandard numerical method to compute the travelling wave solutions of nonlinear reaction diffusion equations at high wave speeds. Related general properties are studied using the perturbation approximation. At high wave speed the perturbation parameter approaches to zero and the problem exhibits a multiscale character. That is, there are thin layers where the solution varies rapidly, while away from these layers the solution behaves regularly and varies slowly. Most of the conventional methods fail to capture this layer behavior. Thus, the quest for some new numerical techniques that may handle the travelling wave solutions at high wave speeds earns relevance. In this paper, one such parameter robust nonstandard numerical scheme is constructed, in the sense that its numerical solution converges in the maximum norm to the exact solution uniformly well for all finite wave speeds. To overcome the difficulty due to the nonlinearity, the problem is linearized using the quasilinearization process followed by nonstandard finite difference discretization. An extensive amount of analysis is carried out which uses a suitable decomposition of the error into smooth and singular component and a comparison principle combined with appropriate barrier functions. The error estimates are obtained, which ensures uniform convergence of the method. A set of numerical experiment is carried out in support of the predicted theory that validates computationally the theoretical results. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007
Keywords:travelling wave solution  reaction diffusion equation  perturbation approximation  quasilinearization  nonstandard finite difference method  parameter robust
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号