首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multicriterion structure/control design for optimal maneuverability and fault tolerance of flexible spacecraft
Authors:J Ling  P Kabamba  J Taylor
Institution:(1) Aerospace Engineering Department, University of Michigan, Ann Arbor, Michigan
Abstract:A multicriterion design problem for optimal maneuverability and fault tolerance of flexible spacecraft is considered. The maneuverability index reflects the time required to perform rest-to-rest attitude maneuvers for a given set of angles, with the postmaneuver spillover within a specified bound. The performance degradation is defined to reflect the maximum possible attitude error after maneuver due to the effect of faults. The fault-tolerant design is to minimize the worst performance degradation from all admissible faults by adjusting the design of the spacecraft. It is assumed that admissible faults can be specified by a vector of real parameters. The multicriterion design for optimal maneuverability and fault tolerance is shown to be well defined, leading to a minimax problem. Analysis for this nonsmooth problem leads to closed-form expressions of the generalized gradient of the performance degradation function with respect to the fault parameters and structural design variables. Necessary and sufficient conditions for the optimum are derived, and the closed-form expressions of the generalized gradients are applied for their interpretation. The bundle method is applicable to this minimax problem. Approximate methods which efficiently solve this minimax problem with relatively little computational difficulties are presented. Numerical examples suggest that it is possible to improve the fault tolerance substantially with relatively little loss in maneuverability.
Keywords:Optimization  control  structures  spacecraft  fail-safe design
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号