首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonmonotone stabilization methods for nonlinear equations
Authors:M C Ferris  S Lucidi
Institution:(1) Computer Sciences Department, University of Wisconsin, Madison, Wisconsin;(2) Dipartimento di Informatica e Sistemistica, Università di Roma ldquoLa Sapienzardquo, Roma, Italy
Abstract:We are concerned with defining new globalization criteria for solution methods of nonlinear equations. The current criteria used in these methods require a sufficient decrease of a particular merit function at each iteration of the algorithm. As was observed in the field of smooth unconstrained optimization, this descent requirement can considerably slow the rate of convergence of the sequence of points produced and, in some cases, can heavily deteriorate the performance of algorithms. The aim of this paper is to show that the global convergence of most methods proposed in the literature for solving systems of nonlinear equations can be obtained using less restrictive criteria that do not enforce a monotonic decrease of the chosen merit function. In particular, we show that a general stabilization scheme, recently proposed for the unconstrained minimization of continuously differentiable functions, can be extended to methods for the solution of nonlinear (nonsmooth) equations. This scheme includes different kinds of relaxation of the descent requirement and opens up the possibility of describing new classes of algorithms where the old monotone linesearch techniques are replace with more flexible nonmonotone stabilization procedures. As in the case of smooth unconstrained optimization, this should be the basis for defining more efficient algorithms with very good practical rates of convergence.This material is partially based on research supported by the Air Force Office of Scientific Research Grant AFOSR-89-0410, National Science Foundation Grant CCR-91-57632, and Istituto di Analisi dei Sistemi ed Informatica del CNR.
Keywords:Nonlinear equations  stabilization techniques  global convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号