首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Affine scaling interior Levenberg–Marquardt method for bound-constrained semismooth equations under local error bound conditions
Authors:Detong Zhu
Institution:Department of Mathematics, Shanghai Normal University, Shanghai 200234, PR China
Abstract:We develop and analyze a new affine scaling Levenberg–Marquardt method with nonmonotonic interior backtracking line search technique for solving bound-constrained semismooth equations under local error bound conditions. The affine scaling Levenberg–Marquardt equation is based on a minimization of the squared Euclidean norm of linear model adding a quadratic affine scaling matrix to find a solution that belongs to the bounded constraints on variable. The global convergence results are developed in a very general setting of computing trial directions by a semismooth Levenberg–Marquardt method where a backtracking line search technique projects trial steps onto the feasible interior set. We establish that close to the solution set the affine scaling interior Levenberg–Marquardt algorithm is shown to converge locally Q-superlinearly depending on the quality of the semismooth and Levenberg–Marquardt parameter under an error bound assumption that is much weaker than the standard nonsingularity condition, that is, BD-regular condition under nonsmooth case. A nonmonotonic criterion should bring about speed up the convergence progress in the contours of objective function with large curvature.
Keywords:90C30  90C33  49J40  65H10  65K05  49M37
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号