首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate
Authors:Govind Prasad Sahu  Joydip Dhar
Institution:ABV - Indian Institute of Information Technology & Management, Gwalior, Madhya Pradesh 474010, India
Abstract:In this paper, an SVEIS epidemic model for an infectious disease that spreads in the host population through horizontal transmission is investigated. The role that temporary immunity (natural, disease induced, vaccination induced) plays in the spread of disease, is incorporated in the model. The total host population is bounded and the incidence term is of the Holling-type II form. It is shown that the model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The global dynamics are completely determined by the basic reproduction number R0. If R0<1, the disease-free equilibrium is globally stable which leads to the eradication of disease from population. If R0>1, a unique endemic equilibrium exists and is globally stable in the feasible region under certain conditions. Further, the transcritical bifurcation at R0=1 is explored by projecting the flow onto the extended center manifold. We use the geometric approach for ordinary differential equations which is based on the use of higher-order generalization of Bendixson’s criterion. Further, we obtain the threshold vaccination coverage required to eradicate the disease. Finally, taking biologically relevant parametric values, numerical simulations are performed to illustrate and verify the analytical results.
Keywords:Epidemic model  Vaccination  Temporary immunity  Saturation incidence rate  Global stability  Transcritical bifurcation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号