首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computationally modeling organizational learning and adaptability as resource allocation: An artificial adaptive systems approach
Authors:David L Paul  John C Butler  Keri E Pearlson  Andrew B Whinston
Institution:(1) Department of Management Science and Information Systems, Graduate School of Business, University of Texas at Austin, 78712 Austin, TX
Abstract:A framework for and a computational model of organizational behavior based on an artificial adaptive system (AAS) is presented. An AAS, a modeling approach based on genetic algorithms, enables the modeling of organizational learning and adaptability. This learning can be represented as decisions to allocate resources to the higher performing organizational agents (i.e., individuals, groups, departments, or processes, depending on the level of analysis) critical to the organization's survival in different environments. Adaptability results from the learning function enabling the organizations to change as the environment changes. An AAS models organizational behavior from a micro-unit perspective, where organizational behavior is a function of the aggregate actions and interactions of each of the individual agents of which the organization is composed. An AAS enables organizational decision making in a dynamic environment to be modeled as a satisficing process and not as a maximization process. To demonstrate the feasibility and usefulness of such an approach, a financial trading adaptive system (FTAS) organization is computationally modeled based on the AAS framework. An FTAS is an example of how the learning mechanism in an AAS can be used to allocate resources to critical individuals, processes, functions, or departments within an organization.
Keywords:complex adaptive system  organizational learning  genetic algorithm  resource allocation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号