首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiple Wick Product Chaos Processes
Authors:Michael B Marcus  Jay Rosen
Institution:(1) Department of Mathematics, The City College of CUNY, New York, New York, 10031;(2) Department of Mathematics, College of Staten Island, CUNY, Staten Island, New York, 10301
Abstract:Let u(x) xisinR q be a symmetric nonnegative definite function which is bounded outside of all neighborhoods of zero but which may have u(0)=infin. Let p x, delta(·) be the density of an R q valued canonical normal random variable with mean x and variance delta and let {G x, delta; (x, delta)isinR q ×0,1 ]} be the mean zero Gaussian process with covariance

$$EG_{x,\delta } G_{y,\delta } = \iint {u(s - t)p_{x,\delta } (s)}{ }p_{y,\delta } (t)ds{ }dt$$
A finite positive measure mgr on R q is said to be in 
$$G^r $$
with respect to u, if

$$\iint {\left( {u\left( {x,y} \right)} \right)^r }d\mu \left( x \right){\text{ }}d\mu \left( y \right) < \infty $$
When 
$$\mu \in G^{\left| {\bar m} \right|} $$
, a multiple Wick product chaos 
$$\mathfrak{C}_{\bar m,1,0,\mu } (\bar X)$$
is defined to be the limit in L 2, as deltararr0, of

$$\mathfrak{C}_{\bar m,1,0,\mu ,\delta } (\bar x)\mathop = \limits^{{def}} \int {\prod\limits_{j = 1}^k {:\prod\limits_{p = 1}^{mj} {G_{y + x_{j,p} ,\delta } :} } } du(y)$$
where

$$\bar m = (m_1 , \ldots ,m_k ) \in Z_ + ^k ,{and with }\left| {\bar m} \right| = ^{{def}} \sum\nolimits_{j = 1}^k {m_j } $$
,

$$\bar x = (x_{1,1} , \ldots ,x_{1,m_1 } , \ldots x_{k,1} , \ldots ,x_{k,m_k } ) \in (R^q )^{\left| {\bar m} \right|} $$

$$:\prod\nolimits_{p = 1}^{m_j } {G_{y + x_{j,p} ,\delta ,N} :} $$
denotes the Wick product of the m j normal random variables 
$${\{ G_{y + x_{j,p} ,\delta } \} _{p = 1}^{m_j } }$$
.Consider also the associated decoupled chaos processes 
$$\mathfrak{C}_{r,1,0,\mu }^{dec} (x_1 , \ldots ,x_r )$$
, 
$$r \leqslant \left| {\bar m} \right|$$
defined as the limit in L 2, as deltararr0, of

$$\mathfrak{C}_{r,1,0,\mu ,\delta }^{dec} (x_1 , \ldots ,x_r )\mathop = \limits^{{def}} \int {\prod\limits_{j = 1}^r {G_{y + x_j ,\delta }^{(j)} d\mu (y)} } $$
where 
$$\left\{ {G_{x,\delta }^{(j)} } \right\}$$
are independent copies of G x,delta.Define

$$S_{\bar m,\varepsilon }  = \left\{ {\bar x:\left| {x_{j,p}  - x_{j',q} } \right| > \varepsilon ,\forall 1 \leqslant p \leqslant m_j ,1 \leqslant q \leqslant m_{j'} ,1 \leqslant j,j' \leqslant k,j \ne j'} \right\}$$
Note that a neighborhood of the diagonals of 
$${\bar x}$$
in 
$$(R^q )^{\left| {\bar m} \right|} $$
is excluded, except those points on the diagonal which originate in the same Wick product in (i). Set

$$S_{\bar m, \ne }  = \bigcup\limits_{\varepsilon  > 0} {S_{\bar m,\varepsilon } } $$
One of the main results of this paper is: Theorem A. If 
$$\mathfrak{C}_{r,1,0,\mu ,\delta }^{dec} (x_1 , \ldots ,x_r )$$
is continuous on (R q ) r for all 
$$r \leqslant \left| {\bar m} \right|$$
then 
$$\mathfrak{C}_{\bar m,1,0,\mu } (\bar x)$$
is continuous on 
$$S_{\bar m, \ne } $$
.When u satisfies some regularity conditions simple sufficient conditions are obtained for the continuity of 
$$\mathfrak{C}_{r,1,0,\mu }^{dec} (x_1 , \ldots ,x_r )$$
on (R q ) r . Also several variants of (i) are considered and related to different types of decoupled processes. These results have applications in the study of intersections of Lévy process and continuous additive functionals of several Lévy processes.
Keywords:Gaussian chaos processes  Levy processes  Banach space
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号