首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Advanced MCMC methods for sampling on diffusion pathspace
Authors:Alexandros Beskos  Konstantinos Kalogeropoulos  Erik Pazos
Institution:1. Department of Statistical Science, University College London, UK;2. Department of Statistics, London School of Economics, UK
Abstract:The need to calibrate increasingly complex statistical models requires a persistent effort for further advances on available, computationally intensive Monte-Carlo methods. We study here an advanced version of familiar Markov-chain Monte-Carlo (MCMC) algorithms that sample from target distributions defined as change of measures from Gaussian laws on general Hilbert spaces. Such a model structure arises in several contexts: we focus here at the important class of statistical models driven by diffusion paths whence the Wiener process constitutes the reference Gaussian law. Particular emphasis is given on advanced Hybrid Monte-Carlo (HMC) which makes large, derivative-driven steps in the state space (in contrast with local-move Random-walk-type algorithms) with analytical and experimental results. We illustrate its computational advantages in various diffusion processes and observation regimes; examples include stochastic volatility and latent survival models. In contrast with their standard MCMC counterparts, the advanced versions have mesh-free mixing times, as these will not deteriorate upon refinement of the approximation of the inherently infinite-dimensional diffusion paths by finite-dimensional ones used in practice when applying the algorithms on a computer.
Keywords:Gaussian measure  Diffusion process  Covariance operator  Hamiltonian dynamics  Mixing time  Stochastic volatility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号