首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A mixed-step algorithm for the approximation of the stationary regime of a diffusion
Authors:Gilles Pagès  Fabien Panloup
Institution:1. Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, UPMC, Case 188, 4 pl. Jussieu, F-75252 Paris Cedex 5, France;2. Institut de Mathématiques de Toulouse, Université Paul Sabatier & INSA Toulouse, 135, av. de Rangueil, F-31077 Toulouse Cedex 4, France
Abstract:In some recent papers, some procedures based on some weighted empirical measures related to decreasing-step Euler schemes have been investigated to approximate the stationary regime of a diffusion (possibly with jumps) for a class of functionals of the process. This method is efficient but needs the computation of the function at each step. To reduce the complexity of the procedure (especially for functionals), we propose in this paper to study a new scheme, called the mixed-step scheme, where we only keep some regularly time-spaced values of the Euler scheme. Our main result is that, when the coefficients of the diffusion are smooth enough, this alternative does not change the order of the rate of convergence of the procedure. We also investigate a Richardson–Romberg method to speed up the convergence and show that the variance of the original algorithm can be preserved under a uniqueness assumption for the invariant distribution of the “duplicated” diffusion, condition which is extensively discussed in the paper. Finally, we conclude by giving sufficient “asymptotic confluence” conditions for the existence of a smooth solution to a discrete version of the associated Poisson equation, condition which is required to ensure the rate of convergence results.
Keywords:60G10  60J60  65C05  65D15  60F05
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号