首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tetrachloro- and tetrabromoarsonium(V) cations: raman and 75As, 19F NMR spectroscopic characterization and X-ray crystal structures of [AsCl4][As(OTeF5)6] and [AsBr4][AsF(OTeF5)5]
Authors:Gerken M  Kolb P  Wegner A  Mercier H P  Borrmann H  Dixon D A  Schrobilgen G J
Institution:Department of Chemistry, McMaster University, Hamilton, Ontario, Canada.
Abstract:The salts AsX4]As(OTeF5)6] and AsBr4]AsF(OTeF5)5] (X = Cl, Br) have been prepared by oxidation of AsX3 with XOTeF5 in the presence of the OTeF5 acceptors As(OTeF5)5 and AsF(OTeF5)4. The mixed salts AsCl4]Sb(OTeF5)6-nCl(n-2)] and AsCl4]Sb(OTeF5)6-nCl(n)] (n > or = 2) have also been prepared. The AsBr4+ cation has been fully structurally characterized for the first time in SO2ClF solution by 75As NMR spectroscopy and in the solid state by a single-crystal X-ray diffraction study of AsBr4]AsF(OTeFs)5]: P1, a = 9.778(4) A, b = 17.731(7) A, c = 18.870(8) A, alpha = 103.53(4)degrees, beta = 103.53(4) degrees, gamma = 105.10(4) degrees, V = 2915(2) A3, Z = 4, and R1 = 0.0368 at -183 degrees C. The crystal structure determination and solution 75As NMR study of the related AsCl4]As(OTeF5)6] salt have also been carried out: AsCl4]As(OTeF5)6], R3, a = 9.8741(14) A, c = 55.301(11) A, V= 4669(1) A3, Z = 6, and R1 = 0.0438 at -123 degrees C; and R3, a = 19.688(3) A, c = 55.264(11) A, V= 18552(5) A3, Z = 24, and R1 = 0.1341 at -183 degrees C. The crystal structure of the As(OTeF5)6- salt reveals weaker interactions between the anion and cation than in the previously known AsF6- salt. The AsF(OTeF5)5- anion is reported for the first time and is also weakly coordinating with respect to the AsBr4+ cation. Both cations are undistorted tetrahedra with bond lengths of 2.041(5)-2.056(3) A for AsCl4+ and 2.225(2)-2.236(2) A for AsBr4+. The Raman spectra are consistent with undistorted AsX4+ tetrahedra and have been assigned under Td point symmetry. The 35Cl/37Cl isotope shifts have been observed and assigned for AsCl4+, and the geometrical parameters and vibrational frequencies of all known and presently unknown PnX4+ (Pn = P, As, Sb, Bi; X = F, Cl, Br, I) cations have been calculated using density functional theory methods.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号