首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Schottky barrier MOSFET structure with silicide source/drain on buried metal
Authors:Li Ding-Yu  Sun Lei  Zhang Sheng-Dong  Wang Yi  Liu Xiao-Yan and Han Ru-Qi
Institution:Institute of Microelectronics, Peking University, Beijing 100871, China
Abstract:In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher {on-state} current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel case. The 50~nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e~V (for ErSi) and the bottom barrier is 0.6eV (for CoSi2. Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2mA/μm at Vds=1V, Vgs=2V) and the high Ion/Imin ratio (106) are both achieved by applying the SSDOM structure.
Keywords:Schottky barrier MOSFET  Schottky barrier  barrier height  silicide source/drain
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号