首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of Intra-Dot Coulomb Interaction on Andreev Reflection in Normal-Metal/Quantum-Dot/Superconductor System
Authors:ZHU Yu  SUN Qing-Feng and LIN Tsung-Han
Institution:State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
Abstract:We investigate the effect of intra-dot Coulomb interaction on the Andreev reflection in a normal-metal/quantum-dot/superconductor (N-QD-S) system with multiple levels in the quantum dot, in the regime where the intra-dot interacting constant is comparable to the energy gap of superconducting lead. By using nonequilibrium Green function method, the averaged occupation of electrons in the quantum dot and the Andreev reflection (AR) current are studied. Comparing to the case of non-interacting quantum dot, the system shows significant changes for the averaged occupation of electrons in QD (〈n〉) and the AR current (I). (i) In the linear response regime, 〈n〉-Vg exhibits a two-step-like behavior; and the I-Vg shows two groups of peaks, separated by U and with equal heights, where Vg is the gate voltage and U denotes the intra-dot Coulomb interaction constant. (ii) For finite bias voltage, dips, superposed on the step-like 〈n〉-Vg curve, and the current peaks appear simultaneously, both originate from the AR processes. For V≥U/2, extra AR current peaks occur between the two groups of the peaks. Besides, the properties of the heights of the AR current peaks are more complicated.
Keywords:Coulomb interactions  Andreev reflection    normal-metal/quantum-dot/superconductor system                                                                                                                
点击此处可从《理论物理通讯》浏览原始摘要信息
点击此处可从《理论物理通讯》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号