首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized Bayes minimax estimation of the normal mean matrix with unknown covariance matrix
Authors:Hisayuki Tsukuma  
Affiliation:aFaculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota-ku, Tokyo 143-8540, Japan
Abstract:
This paper addresses the problem of estimating the normal mean matrix in the case of unknown covariance matrix. This problem is solved by considering generalized Bayesian hierarchical models. The resulting generalized Bayes estimators with respect to an invariant quadratic loss function are shown to be matricial shrinkage equivariant estimators and the conditions for their minimaxity are given.
Keywords:Decision theory   Equivariance   Generalized Bayes estimation   Hierarchical model   Minimaxity   Multivariate linear model   Posterior mean   Quadratic loss   Shrinkage estimator
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号