首页 | 本学科首页   官方微博 | 高级检索  
     


Dissolution thermochemistry of alkali metal dianion salts (M2X1, M = Li+, Na+, and K+ with X = CO3(2-), SO4(2-), C8H8(2-), and B12H12(2-))
Authors:Lee Tae Bum  McKee Michael L
Affiliation:Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States.
Abstract:The dissolution Gibbs free energies (ΔG°(diss)) of salts (M(2)X(1)) have been calculated by density functional theory (DFT) with Conductor-like Polarizable Continuum Model (CPCM) solvation modeling. The absolute solvation free energies of the alkali metal cations (ΔG(solv)(M(+))) come from the literature, which coincide well with half reduction potential versus SHE data. For solvation free energies of dianions (ΔG(solv)(X(2-))), four different DFT functionals (B3LYP, PBE, BVP86, and M05-2X) were applied with three different sets of atomic radii (UFF, UAKS, and Pauling). Lattice free energies (ΔG(latt)) of salts were determined by three different approaches: (1) volumetric, (2) a cohesive Gibbs free energy (ΔG(coh)) plus gaseous dissociation free energy (ΔG(gas)), and (3) the Born-Haber cycle. The G4 level of theory, electron propagator theory, and stabilization by dielectric medium were used to calculate the second electron affinity to form the dianions CO(3)(2-) and SO(4)(2-). Only the M05-2X/Pauling combination with the three different methods for estimating ΔG(latt) yields the expected negative dissolution free energies (ΔG°(diss)) of M(2)SO(4). Salts with large dianions like M(2)C(8)H(8) and M(2)B(12)H(12) reveal the limitation of using static radii in the volumetric estimation of lattice energies. The value of ΔE(coh) was very dependent on the DFT functional used.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号