首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of thermal treatment on interfacial properties of beta-lactoglobulin
Authors:Kim Dennis A  Cornec Michel  Narsimhan Ganesan
Affiliation:Biochemical and Food Process Engineering, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-1146, USA.
Abstract:The changes in the secondary conformation and surface hydrophobicity of beta-lactoglobulin subjected to different thermal treatments were characterized at pH values of 7, 5.5 and 4 using circular dichroism (CD) and hydrophobic dye binding. Heating resulted in a decrease in alpha-helix content with a corresponding increase in random coil at all pH values, this change being more pronounced for small heating times. Heating also resulted in an increase in surface hydrophobicity as a result of partial denaturation, this increase being more pronounced at pH 4. Thermal treatment resulted in a shift of the spread monolayer isotherm at air-water interface to smaller area per molecule due to increased flexibility and more loop formation. Thermal treatment led to an increase in interfacial shear elasticity and viscosity of adsorbed beta-lactoglobulin layer at pH 5.5 and 7. Interfacial shear elasticity, shear viscosity, stability of beta-lactoglobulin stabilized emulsion and average coalescence time of a single droplet at a planar oil-water interface with adsorbed protein layer exhibited a maximum for protein subjected to 15 min heat treatment at pH 7. At pH 5.5, the interfacial shear rheological properties and average single drop coalescence time were maximum for 15 min heat treatment whereas emulsion stability was maximum for 5 min heat treatment. At pH 7, thermal treatment was found to enhance foam stability. Analysis of thin film drainage indicated that interfacial shear rheological properties do not influence thin film drainage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号