Abstract: | ![]() Copper(II)-exchanged-13X molecular sieves, prepared from four copper(II) salts, namely, sulfate, nitrate, chloride, and acetate, and their activities in the polymerization of N-vinylcarbazole at a fixed copper ion exchange level were studied. From the kinetic characteristics of polymerization it was established that the variation in activities of the Cu-exchanged sieves is due primarily to the difference in the pH of the original salt solution, which is responsible for the varying degree of proton exchange with the zeolite during copper ion exchange. A first-order dependence of the rate of polymerization was observed with respect to H+ ion concentration of the original copper-salt solution. It was further established that the rate of polymerization of exchanged copper ion, at a hypothetical zero proton concentration, is low. A mechanism of polymerization of NVC on copper-exchanged-13X zeolite was suggested on the basis of the results obtained. |